Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
TRISH (Tree-Ring Integrated System for Hydrology), a new web-based tool for reconstruction of water-balance variables from tree-ring proxies is described. The tool makes use of a mapping application, a global water balance model and R-based reconstruction software. Long time series of water balance variables can be reconstructed by regression or analog statistical methods from tree-ring data uploaded by the user or available in TRISH as previously uploaded public datasets. A predictand hydroclimatic time series averaged or summed over a river basin or arbitrary polygon can be generated interactively by clicking on the map. Control over reconstruction modeling includes optional lagging of predictors, transformation of predictand, and reduction of predictors by principal component analysis. Output includes displayed and downloadable graphics, statistics, and time series. The two-stage reconstruction approach in TRISH allows assessment of the strength of the hydroclimatic signal in individual chronologies in addition to providing a reconstruction based on the tree-ring network. TRISH facilitates the testing of sensitivity of reconstructions to modeling choices and allows a user to explore hydrologic reconstruction in ungauged basins. The R software for reconstruction is available for running offline in the RStudio development environment. TRISH is an open-science resource designed to be shared broadly across the Earth Science research community and to engage water resource management.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Endorheic drainage basins, those inland basins not connected directly to ocean, are essential for hydrological modeling of global and regional water balances, land surface water storage, gravity anomalies, sea level rise, etc. Within many hydrological model frameworks, river basins are defined by digital river networks through their flow direction and connectivity datasets. Here we present an improvement to gridded flow direction data and its derivatives produced from upscaled global 5 and 15 arc minute MERIT networks. We explicitly label endorheic and exorheic drainage basins and alter the delineation of endorheic basins by merging small inland watersheds to the adjacent host basins. The resulting datasets have a significantly reduced number of endorheic basins while preserving the total land portion of those basins since most of the merged catchments were inside other larger endorheic areas. We developed and present here the endorheic basin delineation method. This method performs an analysis of the contributing river and basin geometry relative to the location of the flow end point (i.e. potential endorheic lake), proximity of the latter to the drainage basin boundary and the elevation difference between the basin's lowest point and potential spillover location at the basin boundary. The new digital river network was validated using the University of New Hampshire Water Balance Model by comparing the water balance of endorheic inland depressions with modeled accumulation of water in their inland lakes based on the observed historical climate drivers used by WBM.more » « less
-
Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling.more » « less
An official website of the United States government
